Giant facet-dependent spin-orbit torque and spin Hall conductivity in the triangular antiferromagnet IrMn3
نویسندگان
چکیده
There has been considerable interest in spin-orbit torques for the purpose of manipulating the magnetization of ferromagnetic elements for spintronic technologies. Spin-orbit torques are derived from spin currents created from charge currents in materials with significant spin-orbit coupling that propagate into an adjacent ferromagnetic material. A key challenge is to identify materials that exhibit large spin Hall angles, that is, efficient charge-to-spin current conversion. Using spin torque ferromagnetic resonance, we report the observation of a giant spin Hall angle [Formula: see text] of up to ~0.35 in (001)-oriented single-crystalline antiferromagnetic IrMn3 thin films, coupled to ferromagnetic permalloy layers, and a [Formula: see text] that is about three times smaller in (111)-oriented films. For (001)-oriented samples, we show that the magnitude of [Formula: see text] can be significantly changed by manipulating the populations of various antiferromagnetic domains through perpendicular field annealing. We identify two distinct mechanisms that contribute to [Formula: see text]: the first mechanism, which is facet-independent, arises from conventional bulk spin-dependent scattering within the IrMn3 layer, and the second intrinsic mechanism is derived from the unconventional antiferromagnetic structure of IrMn3. Using ab initio calculations, we show that the triangular magnetic structure of IrMn3 gives rise to a substantial intrinsic spin Hall conductivity that is much larger for the (001) than for the (111) orientation, consistent with our experimental findings.
منابع مشابه
Torque and conventional spin-Hall currents in two-dimensional spin-orbit coupled systems: Universal relation and hyper-selection rule
We investigate torque and also conventionally defined spin-Hall currents in two-dimensional (2D) spin-orbit coupled systems of spin-1/2 particles within the linear response Kubo formalism. We obtain some interesting relations between the conventional and torque spin-Hall conductivities for the generic effective Hamiltonian H0 = ǫ 0 k + A(k)σx − B(k)σy, where A(k) = η i ki + η A ijkikj + η A ijl...
متن کاملAbstract Submitted for the MAR06 Meeting of The American Physical Society Spin Hall effect in p-type semiconductors in magnetic fields
Submitted for the MAR06 Meeting of The American Physical Society Spin Hall effect in p-type semiconductors in magnetic fields MEHDI ZAREA, SERGIO ULLOA, Ohio University — We calculate the spin Hall conductivity driven by Rashba spin-orbit interaction in p-type two-dimensional semiconductors in the presence of a perpendicular magnetic field. For a highly confined quantum well the eigenstates and...
متن کاملSemiclassical spin transport in spin-orbit-coupled bands.
Motivated by recent interest in novel spintronics effects, we develop a semiclassical theory of spin transport that is valid for spin-orbit coupled bands. Aside from the obvious convective term in which the average spin is transported at the wave packet group velocity, the spin current has additional contributions from the wave packet's spin and torque dipole moments. Electric field corrections...
متن کاملVertex corrections to the anomalous Hall effect in spin-polarized two-dimensional electron gases with a Rashba spin-orbit interaction.
We study the effect of disorder on the intrinsic anomalous Hall conductivity in a magnetic two-dimensional electron gas with a Rashba-type spin-orbit interaction. We find that anomalous Hall conductivity vanishes unless the lifetime is spin-dependent, similar to the spin Hall conductivity in the nonmagnetic system. In addition, we find that the spin Hall conductivity does not vanish in the pres...
متن کاملCharge-Induced Spin Torque in Anomalous Hall Ferromagnets.
We demonstrate that spin-orbit coupled electrons in a magnetically doped system exert a spin torque on the local magnetization, without a flowing current, when the chemical potential is modulated in a magnetic field. The spin torque is proportional to the anomalous Hall conductivity, and its effective field strength may overcome the Zeeman field. Using this effect, the direction of the local ma...
متن کامل